Telegram Group & Telegram Channel
Почему удаление высоко коррелированных признаков считается хорошей практикой?

Удаление высоко коррелированных признаков считается хорошей практикой по нескольким причинам:

▫️Устранение мультиколлинеарности
Когда два или более признаков имеют высокую корреляцию, это может привести к проблеме мультиколлинеарности, особенно в линейных моделях, таких как линейная регрессия и логистическая регрессия. Мультиколлинеарность означает, что признаки не несут дополнительной информации, что приводит к нестабильности коэффициентов модели. Модель может стать чувствительной к малым изменениям в данных, что вызывает большие изменения в оценке параметров.

▫️Снижение размерности
Каждый добавленный признак увеличивает размерность пространства признаков, что усложняет модель. Это может привести к проблеме, известной как «проклятие размерности» (curse of dimensionality). В пространствах высокой размерности расстояния между точками увеличиваются, и данные становятся более разреженными. Это затрудняет обучение модели, так как для правильного обобщения данных требуется больше наблюдений, чтобы покрыть все возможные комбинации признаков. Удаление коррелированных признаков помогает уменьшить размерность и улучшить работу модели.

▫️Улучшение интерпретируемости модели
Когда признаки высоко коррелированы, интерпретировать влияние каждого признака на итоговый результат модели становится сложно. Например, в линейных моделях трудно определить, какой из коррелированных признаков на самом деле влияет на результат, так как они могут взаимозависимо изменять коэффициенты друг друга.

#машинное_обучение



tg-me.com/ds_interview_lib/616
Create:
Last Update:

Почему удаление высоко коррелированных признаков считается хорошей практикой?

Удаление высоко коррелированных признаков считается хорошей практикой по нескольким причинам:

▫️Устранение мультиколлинеарности
Когда два или более признаков имеют высокую корреляцию, это может привести к проблеме мультиколлинеарности, особенно в линейных моделях, таких как линейная регрессия и логистическая регрессия. Мультиколлинеарность означает, что признаки не несут дополнительной информации, что приводит к нестабильности коэффициентов модели. Модель может стать чувствительной к малым изменениям в данных, что вызывает большие изменения в оценке параметров.

▫️Снижение размерности
Каждый добавленный признак увеличивает размерность пространства признаков, что усложняет модель. Это может привести к проблеме, известной как «проклятие размерности» (curse of dimensionality). В пространствах высокой размерности расстояния между точками увеличиваются, и данные становятся более разреженными. Это затрудняет обучение модели, так как для правильного обобщения данных требуется больше наблюдений, чтобы покрыть все возможные комбинации признаков. Удаление коррелированных признаков помогает уменьшить размерность и улучшить работу модели.

▫️Улучшение интерпретируемости модели
Когда признаки высоко коррелированы, интерпретировать влияние каждого признака на итоговый результат модели становится сложно. Например, в линейных моделях трудно определить, какой из коррелированных признаков на самом деле влияет на результат, так как они могут взаимозависимо изменять коэффициенты друг друга.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/616

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA